

Date Planned ://	Daily Tutorial Sheet-1	Expected Duration : 90 Min		
Actual Date of Attempt ://	JEE Main (Archive)	Exact Duration :		

1.	When the sample of copper with zinc impurity is to be purified by electrolysis, the appropriate electrode are:										
		Cathode		Anod	le				(2002)		
	(B) impure sample pure c			pure copper							
				copper							
				impu	impure sample						
	(D)	pure copper impur			re sampl	e					
2.	Cyanic	Cyanide process is used for the extraction of :									
	(A)	barium	(B)	aluminium	(C)	boron	(D)	silver			
3.	The m	The metal extracted by leaching with a cyanide is :									
	(A)	Mg	(B)	Ag	(C)	Cu	(D)	Na			
4.	Aluminium is extracted by the electrolysis of:										
	(A)	bauxite									
	(B)	alumina									
	(C)	alumina mixed with molten cryolite									
	(D)	molten cryolite									
5.	For the	For the reactions, (2002)									
		$C + O_2 \longrightarrow CO_2$; $\Delta H = -393 J$									
		2Zn + O ₂	→2ZnO;	$\Delta H = -412J$							
	(A)	carbon can oxidise Zn				oxidation	of carbon is 1	not feasible			
	(C)	oxidation of Zn is not feasible			(D)	Zn can o	xidise carbon	l			
6.	During the process of electrolytic refining of copper, some metals present as impurity settle as 'anode										
		mud'. These are :									
	(A)	Sn and Ag	(B)	Pb and Zn	(C)	Ag and A	u (D)	Fe and Ni			
7.	Which	of the followin	g factors	s is of no sign	ificance	for roasting	sulphide or	es to the oxid	des and not		
		Thich of the following factors is of no significance for roasting sulphide ores to the oxides and ubjecting the sulphide ores to carbon reduction directly?									
	(A)	CO_2 is more volatile than CS_2									
	(B)	Metal sulphides are thermodynamically more stable than ${\rm CS}_2$									
	(C)	${ m CO_2}$ is thermodynamically more stable than ${ m CS_2}$									
	(D)	Metal sulphides are less stable than the corresponding oxides									
8.	Which method of purification is represented by the following equation? (20)										
		$Ti(s) + 2I_2(g) \xrightarrow{523 \text{ K}} TiI_4(g) \xrightarrow{1700 \text{ K}} Ti(s) + 2I_2(g)$									
	(A)	Cupellation	(B)	Poling	(C)	Van Arkel	(D)	Zone refinin	ıg		

- **9.** Which series of reactions correctly represents chemical relations related to iron and its compound?
 - $\text{(A)} \qquad \text{Fe} \xrightarrow{\quad O_2, \text{ heat} \quad} \text{Fe}_3 O_4 \xrightarrow{\quad CO, \text{ } 600\,^\circ\text{C} \quad} \text{FeO} \xrightarrow{\quad CO, \text{ } 700\,^\circ\text{C} \quad} \text{Fe}$

(2014)

- $\text{(B)} \qquad \text{Fe} \xrightarrow{\quad \text{dil. H}_2 \text{SO}_4 \rightarrow} \text{FeSO}_4 \xrightarrow{\quad \text{H}_2 \text{SO}_4, \text{ O}_2 \rightarrow} \text{Fe}_2(\text{SO}_4)_3 \xrightarrow{\quad \text{heat} \rightarrow} \text{Fe}$
- (C) Fe $\xrightarrow{O_2, \text{ heat}}$ FeO $\xrightarrow{\text{dil. H}_2SO_4}$ FeSO₄ $\xrightarrow{\text{heat}}$ Fe
- **(D)** Fe $\xrightarrow{\text{Cl}_2, \text{ heat}}$ FeCl₃ $\xrightarrow{\text{heat, air}}$ FeCl₂ $\xrightarrow{\text{Zn}}$ Fe
- **10.** In the isolation of metals, calcination process usually results in :

(2015)

(A) metal carbonate

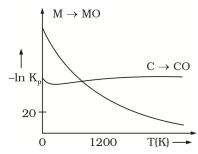
(B) metal oxide

(C) metal sulphide

(D) metal hydroxide

11. Calamine is an ore of :

(2015)


- (A) aluminium
- (B) copper
- (C) iron
- (D) zinc
- **12.** Which one of the following ores is best concentrated by froth floatation method?

(2016)

- (A) Magnetite
- Siderite
- (C) Galena
- (D) Malachite
- 13. The plot shows the variation of $-\mbox{ln } K_p$ versus temperature for the two reactions.
- (2016)

$$M(s) + \frac{1}{2}O_2(g) \longrightarrow MO(s)$$
 and $C(s) + \frac{1}{2}O_2(g) \longrightarrow CO(g)$

(B)

Identify the correct statement.

- (A) At T < 1200 K, oxidation of carbon is unfavourable.
- **(B)** Oxidation of carbon is favourable at all temperatures.
- (C) At T < 1200 K, the reaction $MO(s) + C(s) \longrightarrow M(s) + CO(g)$ is spontaneous.
- (D) At T > 1200 K, carbon will reduce MO(s) to M(s)
- $\textbf{14.} \hspace{0.5in} \textbf{Extraction of copper by smelting uses silica as an additive to remove:} \\$

(2016)

- (A) Cu_2O
- (B) FeS
- (C) FeO
- (**D**) Cu_2S
- **15.** The following reaction occurs in the blast furnace where iron ore is reduced to iron metal:

$$Fe_2O_3(s) + 3CO(g) \Longrightarrow 2Fe(\ell) + 3CO_2(g)$$

Using the Le Chatelier's principle, predict which one of the following will not disturb the equilibrium?

(A) Addition of Fe_2O_3

(B) Removal of CO₂

(2017)

(C) Removal of CO

(D) Addition of CO_2

69